Core Facility

Ralf Schülein

Cell Engineering

Portrait Ralf Schuelein

The Cell Engineering Facility uses state of the art CRISPR/Cas techniques to generate gene knock-outs and knock-ins in target cells. Other applications of CRISPR/Cas may be possible following consultation.


CRISPR/Cas techniques

The Cell Engineering Facility uses state-of-the-art CRISPR/Cas techniques to generate gene knock-outs and knock-ins in target cells. By using the resulting cell clones, the function of specific genes and proteins can be studied in detail within the cellular context. Gene knock-out means that the function of a specific gene, and consequently that of its encoded protein, is disrupted by a specific mutation. Gene knock-in means that the specific target gene and its protein gain a new function because of an engineered mutation. 

 

Generell Information

After its publication in 2012, the CRISPR/Cas gene editing system revolutionized molecular biology within only a few years (CRISPR = clustered regularly interspaced short palindromic repeats; see also our Introduction page). The increase in publications using CRISPR/Cas is only comparable to what was seen in the eighties following the development of the polymerase chain reaction (PCR) or in the nineties following the introduction of the green fluorescent protein (GFP). The Cell Engineering Facility of the FMP will make gene knock-outs and knock-ins in various target cells using state-of-the art CRISPR/Cas techniques. Other applications may be possible following consultation. Cell clones will be characterized by DNA sequencing and the genotype will be analyzed to confirm modification of both alleles. Western blotting will be done in case you could provide a specific antibody.
An overview of the methodology we use can be found on the “Methods” page. If you are already familiar with CRISPR/Cas, you may immediately proceed to the “Order” page. At the moment, we will be able to make 2 clones for each FMP group/year. Depending on the amount of simultaneous orders, clones should be ready within 8-12 weeks. If you use the system for the first time or need an overview of its history, function and applications, you may visit our “Introduction” page first. If you have any questions, please get in touch.
Depending on our expenses and the amount of sgRNAs needed, the costs for a cell clone will be in range of 1,500 to 2,500€ and will be charged once the clones are ready.

In addition to CRISPR/Cas gene editing, the Cell Engineering Facility is also able to make stable transfected cell clones using various cell lines upon request.