News Research Personalia

Exploring the effect of isotopes in Chemical Biology – Johannes Broichhagen receives 1.5 Million Euros of Funding from the European Research Council (ERC)

Live cell imaging of native cell surface receptors

Live cell imaging of native cell surface receptors (here GLP1R in red) in living cells (nucleus in green, scale bar = 5 micrometer). Authors: Johannes Broichhagen and Ramona Birke © Johannes Broichhagen and Ramona Birke

The prestigious Starting Grant from the European Research Council (ERC) was awarded to Dr. Johannes Broichhagen from the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP).

Dr. Broichhagen will use the 1.5-million-euro grant to work on different fronts to visualize and manipulate biomolecules to fundamentally understand their localization and function. A dream of many cell biologists and imaging specialist is to image a molecule as is. And how it behaves in living cells, as it would allow the unperturbed interrogation of biological samples. This means that no genetic engineering, no singlet oxygen generation and no need to introduce additional molecules could trouble a biological sample. As such, Dr. Broichhagen envisions the use of a bio-orthogonal entity that remains “unseen” by a cell’s biology and metabolism, yet displays a signature that can be “seen” by the experimenter. In his work, he seeks to overcome this leap by introducing deuterium to small molecules in a step-by-step development. This ground-breaking approach can only be achieved with organic synthesis, which is flexible to introduce deuterium at desired positions on molecular scaffolds. Knowledge needs to be built, and as such, deuterated chromophores (i.e. fluorescent dyes and small molecule photoswitches) will be synthesized for distinctive Chemical biology disciplines, for instance in programs to elucidate receptor location and activity in endocrine and nervous tissue. Furthermore, to gain a deeper knowledge in physiological and pathological states, and to use the unique properties of a carbon-deuterium bond in imaging to allow “label-free labelling”, he aims to quickly and cleanly assess pharmacokinetics of approved drugs with not yet fully identified action mechanisms.
Title of the project: deuterON: Introducing deuterium for next generation chemical biology probes and direct imaging


About the ERC Grants: The funding program of the European Research Council (ERC) is one of the most prestigious in Europe. Starting Grants support excellent researchers beginning with their own independent research team or programme and are endowed with up to 1.5 million euros over five years.

About ERC Grants

Dr. Broichhagen will use the 1.5-million-euro grant to work on different fronts to visualize and manipulate biomolecules to fundamentally understand their localization and function. A dream of many cell biologists and imaging specialist is to image a molecule as is. And how it behaves in living cells, as it would allow the unperturbed interrogation of biological samples. This means that no genetic engineering, no singlet oxygen generation and no need to introduce additional molecules could trouble a biological sample. As such, Dr. Broichhagen envisions the use of a bio-orthogonal entity that remains “unseen” by a cell’s biology and metabolism, yet displays a signature that can be “seen” by the experimenter. In his work, he seeks to overcome this leap by introducing deuterium to small molecules in a step-by-step development. This ground-breaking approach can only be achieved with organic synthesis, which is flexible to introduce deuterium at desired positions on molecular scaffolds. Knowledge needs to be built, and as such, deuterated chromophores (i.e. fluorescent dyes and small molecule photoswitches) will be synthesized for distinctive Chemical biology disciplines, for instance in programs to elucidate receptor location and activity in endocrine and nervous tissue. Furthermore, to gain a deeper knowledge in physiological and pathological states, and to use the unique properties of a carbon-deuterium bond in imaging to allow “label-free labelling”, he aims to quickly and cleanly assess pharmacokinetics of approved drugs with not yet fully identified action mechanisms.
Title of the project: deuterON: Introducing deuterium for next generation chemical biology probes and direct imaging


About the ERC Grants: The funding program of the European Research Council (ERC) is one of the most prestigious in Europe. Starting Grants support excellent researchers beginning with their own independent research team or programme and are endowed with up to 1.5 million euros over five years.

Related Publications