In the format provided by the authors and unedited.

A gain-of-function mutation in the *CLCN2* chloride channel gene causes primary aldosteronism

Fabio L. Fernandes-Rosa^{1,2,3,13*}, Georgios Daniil^{1,2,13}, Ian J. Orozco^{4,5,13}, Corinna Göppner^{4,5}, Rami El Zein^{1,2}, Vandana Jain⁶, Sheerazed Boulkroun^{1,2}, Xavier Jeunemaitre^{1,2,3}, Laurence Amar^{1,2,7}, Hervé Lefebvre^{8,9,10}, Thomas Schwarzmayr¹¹, Tim M. Strom^{11,12}, Thomas J. Jentsch^{10,4,5*} and Maria-Christina Zennaro^{1,2,3*}

¹INSERM, UMRS 970, Paris Cardiovascular Research Center, Paris, France. ²Université Paris Descartes, Sorbonne Paris Cité, Paris, France. ³Assistance Publique–Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France. ⁴Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany. ⁵Max Delbrück Centrum für Molekulare Medizin (MDC), Berlin, Germany. ⁶Division of Pediatric Endocrinology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India. ⁷Assistance Publique–Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension Artérielle, Paris, France. ⁸Normandie Université, UNIROUEN, Rouen, France. ⁹INSERM, DC2N, Rouen, France. ¹⁰Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Rouen, Rouen, France. ¹¹Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany. ¹²Institute of Human Genetics, Technische Universität München, Munich, Germany. ¹³These authors contributed equally: Fabio L. Fernandes-Rosa, Georgios Daniil and Ian J. Orozco. *e-mail: fabio.fernandes-rosa@inserm.fr; jentsch@fmp-berlin.de; maria-christina.zennaro@inserm.fr

Dependence of CIC-2^{WT} and CIC-2^{Asp24} currents on external pH

WT and mutant channels were expressed in *Xenopus* oocytes and measured by two-electrode voltage-clamp using a pulse protocol that clamped the oocytes in 2-s-long 20-mV steps from +60 to -120 mV. **a**,**b**, Representative current traces obtained from WT (**a**) and G24D mutant (**b**) CIC-2 at indicated pH values. **c**,**d**, Mean CIC-2^{WT} (**c**) and CIC-2^{Asp24} (**d**) currents measured after 2 s as a function of voltage and pH. *n* = 3–6 oocytes; error bars, s.e.m. (**e**) Currents at -80 mV (approximately the resting voltage of glomerulosa cells) from CIC-2^{WT} (filled circles) and CIC-2^{Asp24} (open circles) normalized to respective currents at -120 mV at pH 7.4. Note the large pH dependence of WT currents, which is strongly reduced but not abolished by the Gly24Asp mutation.

Effect of CIC-2 downregulation on aldosterone production and expression of genes involved in aldosterone biosynthesis

a, Basal and stimulated (Ang II or K⁺) mRNA expression of *CLCN2* in H295R-S2 cells infected with scrambled (open bars) or CIC-2 (filled bars) shRNA (one-way ANOVA, P < 0.0001, F = 28.11). **b**, Basal and stimulated aldosterone production by H295R-S2 cells infected with scrambled or CIC-2 shRNA. **c**–**e**, Basal and stimulated mRNA expression of *CYP11B2* (one-way ANOVA, P < 0.0001, F = 84) (**c**), *STAR* (Kruskal–Wallis, P = 0.0022) (**d**), and *CYP21A2* (Kruskal–Wallis, P = 0.0002) (**e**) in H295R-S2 cells transfected with scrambled or CIC-2 shRNA. Results of mRNA expression are represented as fold induction of cells infected with scrambled shRNA in basal conditions. Values of all experiments are represented as means ± s.e.m. of two independent experiments performed in experimental triplicate for each condition (n = 6 for scrambled shRNA, n = 12 for CIC-2 shRNA). *P < 0.05; ***P < 0.001; (i) P < 0.05 stimulated versus basal condition; (ii) P < 0.01 stimulated versus basal condition.

CLCN2 variants identified in subjects with bilateral adrenal hyperplasia

a, Sanger sequencing chromatograms showing the *CLCN2* wild-type sequence and the *CLCN2* variant c.143C>G (p.Pro48Arg) identified in subject K963-1 with bilateral adrenal hyperplasia. **b**, Sanger sequencing chromatograms showing the *CLCN2* wild-type sequence and the *CLCN2* variant c.197G>A (p.Arg66Gln) identified in subject K1044-1 with bilateral adrenal hyperplasia. **c**, Alignment and conservation of residues encoded by CIC-2 orthologs. Residues that are conserved among more than three sequences are highlighted in yellow.

Electrophysiological analyses of CIC-2^{GIn66} and CIC-2^{Arg48} channels

a–c, Representative chloride current traces measured by two-electrode voltage-clamp from *Xenopus* oocytes injected with 9.2 ng of human CIC-2^{WT} (**a**), CIC-2^{Gin66} (**b**), or CIC-2^{Arg48} (**c**) cRNA. **d**, Mean ± s.e.m. currents measured after 2 s from experiments in **a**–**c** plotted as a function of clamp voltage. The number of cells, obtained from two different batches of oocytes is indicated in parentheses. **e**, Summary of CI⁻ currents at –80 mV and after 2 s for **a**–**c**. Statistical analyses for CIC-2^{Gin66} and CIC-2^{Arg48} were performed by comparison with CIC-2^{WT}, Mann–Whitney test.

Supplementary material

A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism

Fabio L Fernandes-Rosa^{1,2,3*#}, Georgios Daniil^{1,2*}, Ian Orozco^{4,5*}, Corinna Göppner^{4,5\$}, Rami El Zein^{1,2\$}, Vandana Jain^{6^}, Sheerazed Boulkroun^{1,2^}, Xavier Jeunemaitre^{1,2,3}, Laurence Amar^{1,2,7}, Hervé Lefebvre^{8,9,10}, Thomas Schwarzmayr¹¹, Tim M Strom^{11,12}, Thomas J. Jentsch^{4,5#}, Maria-Christina Zennaro^{1,2,3#}

¹INSERM, UMRS 970, Paris Cardiovascular Research Center, Paris, France ²Université Paris Descartes, Sorbonne Paris Cité, Paris, France ³Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France ⁴Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany ⁵Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany ⁶Division of Pediatric Endocrinology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India ⁷Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension artérielle, Paris, France ⁸Normandie Univ, UNIROUEN, Rouen, France ⁹INSERM, DC2N, Rouen, France ¹⁰Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Rouen, Rouen, France ¹¹Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany ¹²Institute of Human Genetics, Technische Universität München, Munich, Germany

*^{,\$,^}equal contribution; #Corresponding author

Address correspondence to: Maria-Christina Zennaro, MD, PhD INSERM, U970 Paris Cardiovascular Research Center – PARCC 56, rue Leblanc, 75015 Paris – France Tel : +33 (0)1 53 98 80 42 Fax : + 33 (0)1 53 98 79 52 e-mail : <u>maria-christina.zennaro@inserm.fr</u>

Fabio Fernandes Rosa, MD, PhD INSERM, U970 Paris Cardiovascular Research Center – PARCC 56, rue Leblanc, 75015 Paris – France Tel : +33 (0)1 53 98 80 43 Fax : + 33 (0)1 53 98 79 52 e-mail : <u>fabio.fernandes-rosa@inserm.fr</u>

Thomas J. Jentsch, MD, PhD FMP / MDC Robert-Rössle-Strasse 10 13125 Berlin – Germany Tel: +49 30 9406 2961 Fax: +49 30 9406 2960 e-mail: Jentsch@fmp-berlin.de

Gene name	protein	mRNA expression*
CLCN2	ClC-2	1.65±0.23/1.16±0.18**
CLCN1	ClC-1	0.51 ± 0.07
CFTR	CFTR	0.46 ± 0.05
LRRC8A ^{\$}	LRRC8A	1.09±0.22
LRRC8B [#]	LRRC8B	0.62±0.14/0.42±0.041**
LRRC8C [#]	LRRC8C	2.11±0.22
LRRC8D [#]	LRRC8D	9.95±0.84
LRRC8E [#]	LRRC8E	0.79 ± 0.11
TMEM16A	Anoctamin-1	0.44 ± 0.065

Supplementary Table 1: Expression of plasma membrane chloride channels in the human adrenal cortex.

*mRNA expression was retrieved from a transcriptome study including 123 APA and 11 CA¹. Values represent median centred, log2-transformed and model-adjusted expression levels respresented as mean±SEM. **Values represent expression levels detected by two different probes. ^{\$}Essential and [#]non-essential components of the volume-regulated anion channel (VRAC)².

Supplementary Table 2. Primers used for CLCN2 sequence

Exon	Forward primer	Reverse primer
1	CAGGACAGAGCCGGAACC	GGACAGGATTAGGGTAGGCC
2	CATAAGCATGGTCCACTCCC	AGCAGCTCTAATGGCCTCTG
10	AGGCTCCTTTTCACTCAGGT	CCTGTTTTGACTGGGCCATT

Gene Symbol	Forward primer	Reverse primer
18S	CCCTGCCTTTGTACACACC	CGATCCGAGGGCCTCACTA
HPRT	CTCAACTTTAACTGGAAAGAATGTC	TCCTTTTCACCAGCAAGCT
GAPDH	TGCACCACCAACTGCTTAGC	GGCATGGACTGTGGTCATGAG
CLCN2	TTGATCCTGCTCCCTTCCAG	CATAAGCATGGTCCACTCCC
StAR	ATGAGTAAAGTGGTCCCAGATG	ACCTTGATCTCCTTGACATTGG
CYP21A2	GAGTAGTCTCCCAAGGACAGGT	GTGGTGCTGAACTCCAAGAGGA
CYP11B2	GTGTGGAAGGAGCACTTTGAGG	GATGCCTGTGTAGTGTTGAGGC

Supplementary Table 3. Primers used for real-time RT-qPCR

References

- Boulkroun, S. *et al.* Prevalence, Clinical, and Molecular Correlates of KCNJ5 Mutations in Primary Aldosteronism. *Hypertension* 59, 592-8 (2012).
- 2. Voss, F.K. *et al.* Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. *Science* **344**, 634-8 (2014).