Supplementary Information Zdebik et al.

Supplementary Figures

Figure S1

Currents and proton transport in oocytes expressing WT ClC-4 (A-C) and its 'proton glutamate' mutant E281A (D-F). Voltage was clamped in steps of 20 mV from -100 to +80 mV. Original voltage clamp traces are shown in (A) and (D) for WT ClC-4 and the E281A mutant, respectively. Averaged steady-state current-voltage (I/V) curves are given in (B) (ClC-4) (n=10) and (E) (ClC-4_{E281A}) (n=7). (C) (WT) and (F) (E281A) show extracellular pH changes observed before and during a depolarizing pulse trains to + 80 mV. Consistent with the data obtained with ClC-5 (Fig. 1 G, H, main text), E281A gave neither currents nor H⁺ transport. H⁺-transport was studied in 8 and 5 oocytes expressing WT and E281A mutant ClC-4, respectively.

Figure S2

Western blot analysis of total expression levels in *Xenopus* oocytes of CIC-5 and key mutants of the 'proton glutamate' E268, as indicated at the bottom of the lanes. All constructs were tagged with an extracellular HA-epitope as described by Schwake *et al.* (2001) (*J Biol Chem* 276, 12049-12054). Expression times in hours are stated below, and apparent molecular weights are given in the free lane separating results from different expression times. CIC-5 proteins were detected with an antibody directed against the HA-epitope and detection of rab 4 (after stripping the membrane) served as loading control. CIC-5 appears as a doublet, probably due to differences in glycosylation. The gating glutamate mutations did not change expression levels within the experimental error.

Figure S3

Cl⁻, but not H⁺ transport is restored to the ClC-4 'proton glutamate' E281A mutant by additionally inserting the uncoupling mutation in the 'gating glutamate' (E224A). (A) I/V curves of the double mutant with different anions (n=12). SCN⁻ changed dramatically both the shape and the reversal potential of the

currents. Similar, but smaller currents were also observed in non-injected oocytes and mock-transfected cells (data not shown). We therefore assume that part of the current in the presence of SCN⁻ is endogenous. *Inset*, voltage clamp trace obtained with Cl⁻. (**B**) Changing pH_0 affects neither conductance nor reversal potentials, in accord with the lack of H⁺ transport observed in Fluorocyte measurements (**C**)(n=14). Pulses from -60 mV (100ms) to +90 mV (400 ms) were applied repetitively as indicated by bars. Data are almost identical to the results obtained for ClC-5 (shown in Fig. 4 in the main text).

Figure S4

Average I/V curves in the presence of extracellular Cl⁻, NO₃⁻, or SCN⁻ for uninjected oocytes (n=10) (A), oocytes expressing the 'proton glutamate' mutant ClC-5_{E268A} (n=14) (B) and the mutant ClC-5_{E268D} (n=16) (C). Oocytes were from 2 batches in which at least 5 μ A of WT ClC-5 currents were observed at +100 mV. Uninjected oocytes showed currents of comparable magnitude as oocytes injected with ClC-5_{E268A}. Although NO₃⁻ transport is largely uncoupled from H⁺-fluxes in WT ClC-5, it is not detectably transported by the E268A mutant that is thought to disrupt H⁺ transport to the Cl⁻/H⁺-exchange site. Significant, but smaller currents are observed with all anions in the conservative E268D mutant.

Figure S5

CIC-0 and CIC-1 are not converted into CI'/H⁺ transporters by inserting a 'proton glutamate'. When the value which they carry in the position of the "proton glutamates" in the transporter CLCs is mutated to glutamate. (A), typical I/V trace for ClC- 0_{V227E} , (B), Fluorocyte recording of this mutant (n=5). No change in intracellular fluorescence was seen upon activation of the pulse protocol.

Table 1

Reversal potential changes measured upon changes of extracellular pH. Results were obtained from voltage-clamp experiments conducted on the constructs indicated in the first column. The last column indicates the expected change for a CI^-/H^+ exchanger with a 2:1 stoichiometry (calculated as $\Delta E_{H}/3$, where ΔE_{H} is the change in the Nernst potential for protons). The measured values are clearly inconsistent with H^+ transport activity.

Channel	pH change	$\Delta E_{rev} (mV)$	Expected ΔE_{rev} for a
		$(\text{mean} \pm \text{SD}(n))$	2Cl: $1H$ ⁺ exchanger
ClC-0	7.4 to 5	0.3 ± 0.2 (15)	46 mV
ClC-0 _{V227E}	7.3 to 6	0.1 ± 0.1 (2)	25 mV
ClC-0 _{V227E}	7.5 to 5	1.8 ± 0.6 (15)	48 mV
hClC-1 _{V292E}	7.3 to 6	0.5 ± 0.3 (2)	25 mV
hClC-1 _{V292E}	7.3 to 5	0.7 ± 0.5 (6)	44 mV

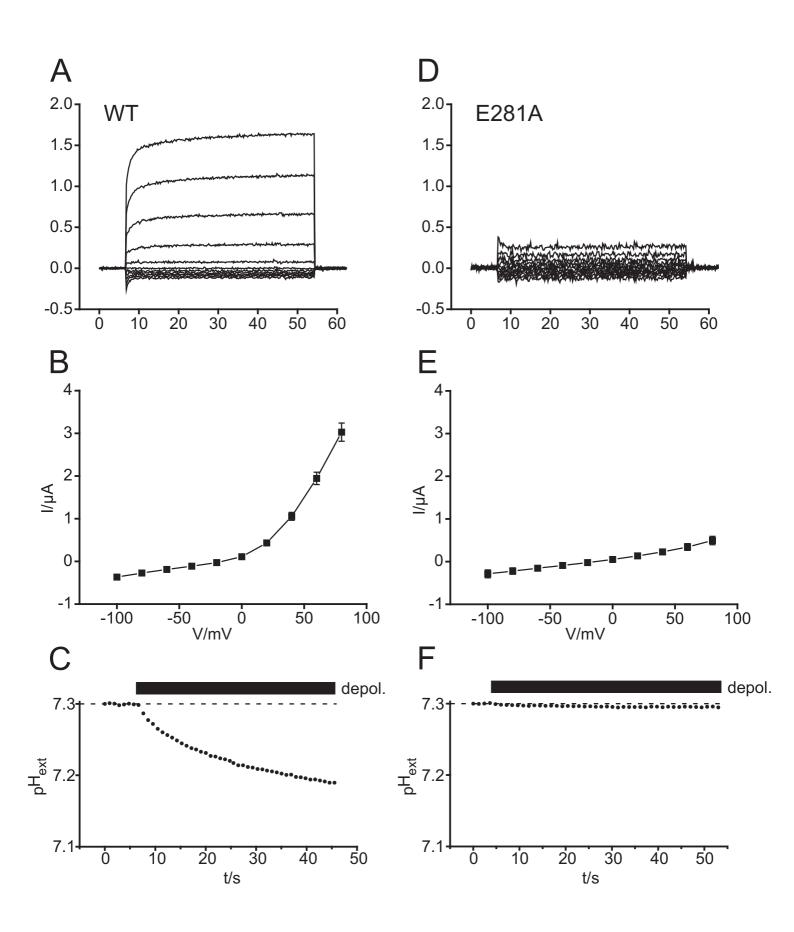


Fig. S1

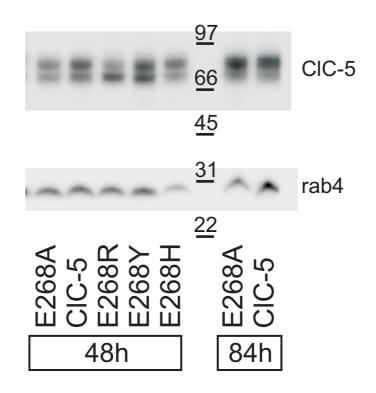


Fig. S2

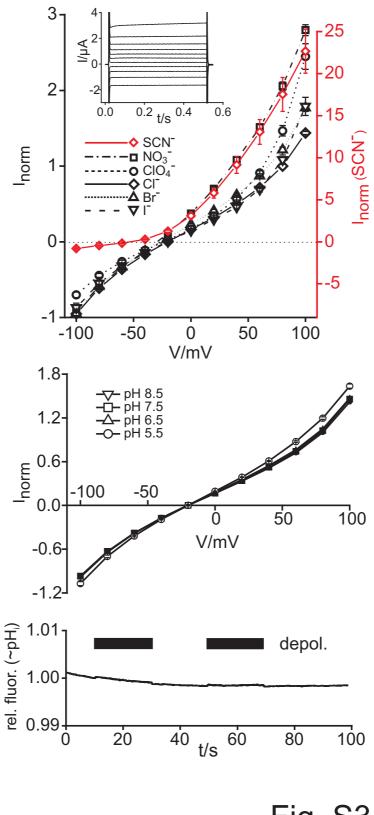
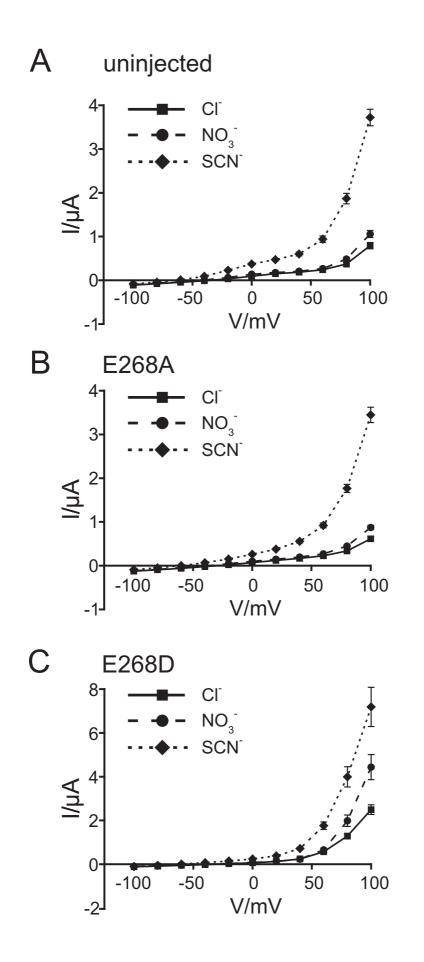



Fig. S3

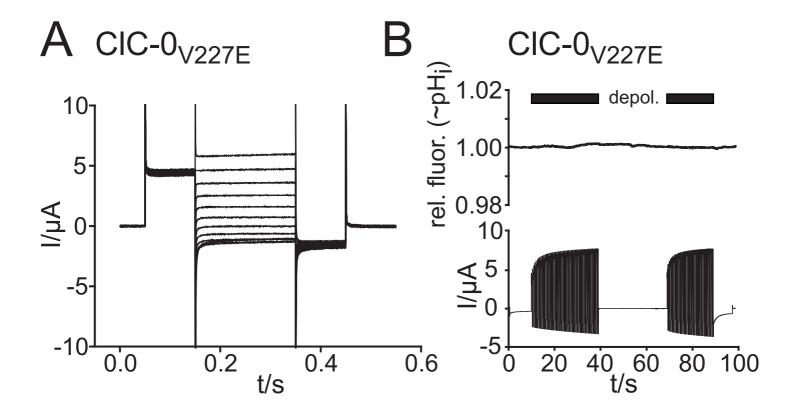


Fig. S5