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Lysosomal Pathology and
Osteopetrosis upon Loss of H+-Driven
Lysosomal Cl– Accumulation
Stefanie Weinert,1,2 Sabrina Jabs,1,2,6 Chayarop Supanchart,3 Michaela Schweizer,4

Niclas Gimber,1,2 Martin Richter,1,6 Jörg Rademann,1,6* Tobias Stauber,1,2

Uwe Kornak,3,5 Thomas J. Jentsch1,2†

During lysosomal acidification, proton-pump currents are thought to be shunted by a chloride ion (Cl–)
channel, tentatively identified as ClC-7. Surprisingly, recent data suggest that ClC-7 instead mediates
Cl–/proton (H+) exchange. We generatedmice carrying a point mutation converting ClC-7 into an uncoupled
(unc) Cl– conductor. Despite maintaining lysosomal conductance and normal lysosomal pH, these
Clcn7unc/unc mice showed lysosomal storage disease like mice lacking ClC-7. However, their osteopetrosis
was milder, and they lacked a coat color phenotype. Thus, only some roles of ClC-7 Cl–/H+ exchange
can be taken over by a Cl– conductance. This conductance was even deleterious in Clcn7+/unc mice.
Clcn7–/– and Clcn7unc/unc mice accumulated less Cl– in lysosomes than did wild-type mice. Thus, lowered
lysosomal chloride may underlie their common phenotypes.

C
lC-7 is the only member of the CLC gene

family of anion transporters substantially

expressed on lysosomes (1–3), where it re-

sides together with its b-subunit Ostm1 (3). Inac-

tivation of either subunit leads to lysosomal storage

disease and osteopetrosis in mice and humans

(1–4). Cellular defects include slowed degradation

of endocytosed proteins (5) and impaired acidifica-

tion of the osteoclast resorption lacuna (1). Cl–

currents mediated by ClC-7 have been deemed nec-

essary for shunting lysosomal proton-pump currents

(1). However, lysosomal pH was normal in cells

lacking either ClC-7 or Ostm1 (2, 3). ClC-7 now

seems likely to be a Cl–/H+ exchanger rather than a

Cl– channel (6, 7). Because H+-pump currents may

be neutralized by both Cl– channels and electro-

genic Cl–/H+ exchangers (6), it is unclear whether

lysosomal Cl–/H+ exchange confers functional

advantages over the simple Cl– conductance in the

textbook model for vesicular acidification.

We created knock-in mice in which the ClC-7

“gating” glutamate (E) was mutated to alanine (A)

(fig. S1) (8). On the basis of results from other CLC

Cl–/H+ exchangers (9–12), this Glu245 → Ala245

(E245A) mutation should lead to Cl– transport that

is uncoupled (unc) from protons, hence our desig-

nation of this allele as Clcn7unc. Homozygous

Clcn7unc/unc mice showed severe growth retardation

(Fig. 1A and fig. S2) and died within 5 weeks. ClC-

7unc and wild-type (WT) ClC-7 were expressed at

similar levels (Fig. 1B) and similarly localized to

lysosomes (Fig. 1D). Neither the abundance, nor

the lysosomal localization of Ostm1was changed

in Clcn7unc/unc mice, contrasting with its strongly

reduced protein level (3) and mislocalization in

Clcn7–/– cells (Fig. 1, C andD). In neurons, however,

ClC-7unc stainingwasmore diffuse (fig. S3B), reflect-

ing changed lysosomal compartments like inClcn7–/–

neurons (2). The abundanceof otherCLCexchangers

was unchanged in Clcn7unc/unc mice (fig. S4).

In an agouti genetic background, the coat color

of Clcn7–/– andOstm1–/– (grey-lethal) mice is grey

(3, 4), whereas it was brownish in WT and

Clcn7unc/unc mice (Fig. 1A). Clcn7unc/unc mice

were osteopetrotic (Fig. 2A and fig. S5), although

less severely than Clcn7–/– (1) or Ostm1–/– (4)

mice. ClC-7 andOstm1were detected at the ruffled

border ofClcn7unc/unc osteoclasts (fig. S3A). This
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Fig. 1. ClC-7 and Ostm1 in mice carrying different Clcn7 alleles. (A)
Clcn7unc/unc, Clcn7–/–, andWT mice at postnatal day 22 (P22) in an agouti
background. (B) ClC-7 immunoblot of tissues from Clcn7unc/unc, Clcn7–/–, and
WT mice. (C) The mature form of Ostm1 (doublet) was absent from Ostm1–/–

(grey-lethal, gl) and Clcn7–/– brains but showed similar abundance in Clcn7+/+,
Clcn7unc/unc (0.97 T 0.20), and Clcn7–/unc (0.85 T 0.32) brains (normalized to
WT, T SEM, six mouse pairs, three immunoblots). kD, kilodaltons. (D) (Top)
Immunofluorescence of ClC-7 or ClC-7unc (green) and the lysosomal marker
Lamp-1 (red) inWT, Clcn7– /–, and Clcn7unc/unc fibroblasts. (Bottom) Costaining
for Ostm1 (red) and ClC-7 or ClC-7unc (green). Normal localization of ClC-7unc

and Ostm1 in Clcn7unc/unc cells, but reticular Ostm1 staining in Clcn7– /– cells.
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acid-secreting membrane was underdeveloped in

Clcn7unc/unc and almost lacking in Clcn7–/– osteo-

clasts (Fig. 2B). WT, Clcn7–/–, and Clcn7unc/unc os-

teoclasts similarly attached to dentine and established

actin rings that surround resorption lacunae (fig.

S6A). In contrast to almost nonresorbing Clcn7–/–

osteoclasts (1), Clcn7unc/unc osteoclasts exca-

vated pits, albeit their number and depths were

strongly reduced (Fig. 2C and fig. S6B).

Like mice lacking ClC-7 (2) or Ostm1 (3),

Clcn7unc/unc mice displayed rapidly progressing

retinal degeneration (fig. S7) and developed neu-

rodegeneration with features of lysosomal storage

disease (Fig. 2D and fig. S8). Although Clcn7+/unc

mice lacked an obvious phenotype during the first

5 months, they showed slowly progressing hippo-

campal neurodegeneration (Fig. 2D and fig. S8C).

No such degeneration was seen in Clcn7+/– mice.

To examine whether the E245A mutation had

converted ClC-7 from a Cl–/H+ exchanger into

an uncoupled anion conductor, we exposed

fluorescein-dextran–loaded lysosomes to different

external Cl– concentrations ([Cl–]o) in the pres-

ence of K+ and valinomycin to shunt currents.

Cl–/H+ exchange predicts a more alkaline luminal

pH (pHl) with higher [Cl–]o. Changes in [Cl–]o
induced larger pHl differences in WT than in

Clcn7unc/unc or knockout (KO) lysosomes (Fig. 3A),

suggesting that ClC-7 mediates Cl–/H+ exchange,

which is uncoupled by the E245A mutation. The

Cl–-dependent pHl changes remaining with KO

and Clcn7unc/unc lysosomes might be owed to a

partial shift of late endosomal ClC-3 into lyso-

somes as in Clcn7–/– mice (13).

We then added the proton ionophore carbonyl

cyanide 3-chlorophenylhydrazone (CCCP) to cul-

tured fibroblasts whose lysosomes were preloaded

with a pH indicator. CCCP dissipates lysosomal pH

only in the presence of countercurrents. Lysosomes

from all three genotypes rapidly alkalinized upon

CCCP addition (Fig. 3B). Clcn7unc/unc lysosomes

reachedamore alkalinepHl thanClcn7
–/– lysosomes.

Thus, ClC-7uncmediates a conductance that is most

likely carried by Cl– as in equivalent mutants of

other CLC exchangers (9–12). Although biophysics

predicts identical equilibrium pHl with an H
+ leak

parallel to either a Cl– conductance or a 2Cl–/H+

exchanger (fig. S9), steady-state pHlwas less alkaline

inClcn7unc/unc than inWT lysosomes (Fig. 3B). Be-

cause equilibrium H+-gradients are determined by

the Cl– diffusion potential, this pHl difference sug-

gests higher lysosomal chloride concentration ([Cl–]l)

in WT than in Clcn7unc/unc lysosomes. The CCCP-

induced alkalinization of Clcn7–/– lysosomes (Fig.

3B) indicates the presence of a sizable lysosomal

conductance beyondClC-7. The final pH of CCCP-

treated KO lysosomes, which is more acidic than

that of Clcn7unc/unc lysosomes, might be explained

by a lumen-negative potential created by a cation

conductance (fig. S9). Mixed K+/Na+ conductances

were reported for lysosomes (14).

As predicted by sizable lysosomal conduct-

ances in all three genotypes, fluorescein-dextran–

loaded lysosomes of WT, Clcn7 unc/unc, and

Clcn7–/– mice showed adenosine triphosphate

(ATP)–driven acidification in vitro (Fig. 3C).Agree-

ing with the presence of a cation conductance,

Clcn7–/– lysosomes acidified also without [Cl–]o
(Fig. 3C). The marked difference to renal endo-

somes, whose acidification depends on chloride

and ClC-5 (15–17), may be explained with a larger

cation conductance in lysosomes (14).

We ratiometrically measured pH in lysosomes

of fibroblasts that were loaded with the dextran-

coupled pH indicator OregonGreen 488 by endo-

cytosis. There was no measurable difference between

Clcn7unc/unc, Clcn7+/unc, Clcn7+/+, or Clcn7–/– cells

(Fig. 3D). The normal steady-state pHl and robust

ATP-dependent acidification eliminates lysosomal

pH as an important factor in lysosomal pathology

of Clcn7unc/unc and Clcn7 –/– mice.

To better understand the role of Cl–/H+ exchange

in vesicular acidification, we modeled a minimal

vesicle containing just an H+ pump, anH+ leak, and

either a 2Cl–/H+ exchanger or a Cl– channel. Al-

though H+ exits through the antiporter during

acidification, simulations predicted more efficient

acidificationwith the exchanger (fig. S10A).Where-

as the lumen became positive in the classical model

involving aCl– channel (18), it got negativewith the

exchanger (fig. S10B). This surprising prediction

might solve the mystery shrouding the voltage-

dependence of endosomal ClC-4 and -5 [thought

to be almost inactive at lumen-positive voltages
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(10, 11, 19)], but it conflicts with the general view

that endosomes and lysosomes are positive inside

(20–22). Thus, considering the effects of Cl–/H+ ex-

change on vesicular voltage might be worthwhile.

On the basis of our calculations, we predicted

that vesicles accumulate more Cl– with a Cl–/H+

exchanger than with a Cl– conductor (fig. S10C).

We synthesized a dextran-coupled, ratioable Cl–-

sensitive dye (fig. S11) and loaded it into lysosomes

of fibroblasts. The strongly quenched fluorescence

of its Cl–-sensitive 6-methoxy-N-ethylquinolinium

bromide (MEQ)moiety inWT,KO, andClcn7unc/unc

lysosomes indicated high [Cl–]l in all genotypes, but

the low sensitivity of the dye above ~60 mM [Cl–]

(fig. S11) precluded reliable comparisons of [Cl–]l.

When we shifted [Cl–]l into a measurable range by

preincubating cells in low chloride, significantly

lower MEQ quenching (lower [Cl–]l) was detected

in Clcn7–/– and Clcn7unc/unc than inWT lysosomes

(Fig. 3E). Analogous to this ClC-7–dependent Cl–

accumulation intomammalian lysosomes, plant vac-

uoles may use AtClC-a to accumulate nitrate (23).

Ourwork has several implications for lysosomal

biology. The central nervous systemandbonepathol-

ogy of Clcn7–/– mice is not due to a loss of Ostm1

that is unstable without ClC-7 (3). However, the

stronger bone phenotype and changed coat color

of mice lacking ClC-7/Ostm1 (table S1) might in-

dicate that protein-protein interactions, which are

almost certainly unchanged in the E245A mutant,

play a role in those phenotypes. Alternatively, the

conductance mediated by ClC-7unc may partially

substitute for Cl–/H+ exchange in these tissues. This

might occur in the acidification of the osteoclast

resorption lacuna (1), either directly by shuntingH+-

currents or by facilitating the exocytic build-up of

the ruffled border. Furthermore, the Clcn7unc allele

has dominant phenotypical effects. The ClC-7unc

conductor may recycle Cl– for the ClC-7 Cl–/H+

exchanger, thereby creating the equivalent of anH+-

leak in Clcn7+/unc mice. Finally, for supporting

proper lysosome and osteoclast function, it is not

sufficient that ClC-7mediates electrical currents but

must exchange chloride for protons. The biological

importance of lysosomal Cl–/H+ exchange may be

related to H+-gradient–driven anion accumulation.
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Fig. 3. Lysosomal transport characterization.
(A) The unc mutation abolished ClC-7 Cl–/H+

exchange, as revealed by Cl–-gradient–driven
pH changes in fluorescein-dextran–loaded
lysosomes exposed to low (10 mM, dashed
lines) or high (107 mM, solid lines) [Cl–]o in
vitro. Averages from 42 (+/+), 20 (unc/unc),
and 32 (–/–) experiments are shown. F, ratio
of fluorescence at l = 535 nm obtained with
excitation at 488 and 440 nm; F0, F at time
t = 0; Val., valinomycin. (B) CCCP-induced
alkalinization of lysosomes in fibroblasts
monitored by Oregon Green–dextran fluores-
cence. Means from more than five independent
cell lines per genotype, with >100 lysosomes
from eight cells each. (C) Similar ATP-dependent
acidification in vitro ofClcn7+/+,Clcn7unc/unc, and
Clcn7–/– lysosomes (the latter with and without
Cl–). The K+/H+-exchanger nigericin was added
as a control. Means from 14 (+/+), 14 (unc/
unc), 10 (–/–), and 23 (–/–, Cl–-free) experi-
ments are shown. Error bars (indicating SEM)
are shown for every third data point. (D)
Steady-state pHl in WT, Clcn7

–/–, Clcn7+/unc, and
Clcn7unc/unc fibroblasts. Averages from three
independent cell lines per genotype, with
~100 lysosomes from three cells each, are
shown. (E) Lower [Cl–]l in Clcn7–/– and
Clcn7unc/unc than in Clcn7+/+ lysosomes
revealed by chloride-sensitive fluorescence ratio
of MEQ/tetramethylrhodamine-dextran endo-
cytosed by fibroblasts and chased 2 hours
into lysosomes in medium containing 7 mM
Cl–. Means from ≥10 experiments are shown
(three cell lines per genotype, 10 cells with 10 lysosomes each per experiment). *P < 0.001, Student’s t test. Error bars denote SEM throughout.
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