- Forschung
- Karriere
- Aktuelles
- Institut
- Durchsuchen
- Spachumstellung
- Leichte Sprache
„”
Wir sind bestrebt, die molekularen Mechanismen zu verstehen, die der Interaktion des intestinalen Mikrobioms mit dem menschlichen Wirt zugrunde liegen. Wir konzentrieren uns auf Bakterien, die im Mikrobiom von Darmkrebspatienten überrepräsentiert sind, und auf die Wechselwirkungen von bakteriellen Adhäsinen mit Epithel- und Immunzellen des Darmsystems. Genomische Sequenzierung, Big-Data-Analysen und umfangreiche mikrobielle Studien in Tiermodellen haben wichtige Einflussfaktoren für Darmkrebs auf mikrobieller und zellulärer Ebene identifiziert, aber die zugrunde liegenden mechanistischen Details sind nicht bekannt. Daher analysieren wir strukturell die Komplexe zwischen kommensalen Proteinen und menschlichen Rezeptoren, um den molekularen Hintergrund ihrer Bindungsmechanismen zu verstehen.
Mit Hilfe der Kryo-Elektronenmikroskopie (Cryo-EM) und der Einzelpartikelanalyse bestimmen wir die Strukturen von Proteinkomplexen, die die Interaktion zwischen Wirt und Mikrobiom erleichtern, was eine Voraussetzung für die strukturbasierte Entwicklung personalisierter Krebsmedikamente ist. Darüber hinaus visualisieren wir molekulare Details von Bakterien, die mit dem Wirtsepithel interagieren, mittels Kryo-ET, um ihre Bindungsmechanismen in einem zellulären Kontext zu verstehen. Schließlich versuchen wir, noch nicht beschriebene bakterielle Adhäsine zu identifizieren, die die Epithelbindung in einem pathogenen Kontext erleichtern, indem wir genomische und biochemische Screening-Systeme einsetzen.
If you are interested in a Master thesis position, please contact Daniel Roderer via email.
G. L. Marongiu*, U. Fink*, A. Oder, J. P. von Kries and Daniel Roderer. Structural basis for immune cell binding of Fusobacterium nucleatum via the trimeric autotransporter adhesin CbpF. Preprint at bioRxiv, 2024. doi: 10.1101/2024.09.17.613310.
A. Celik, F. Schöpf, C.E. Sieger, J.A.M. Morgan, S. Lampe, M. Ruwolt, F. Liu, C.P.R. Hackenberger, D. Roderer and D. Fiedler. Nucleoside diphosphate kinase A (NME1) catalyzes its own oligophosphorylation. Preprint at bioRxiv, 2024. doi: 10.1101/2024.07.29.605581.
F. Schöpf, G. L. Marongiu, K. Milaj, T. Sprink, J. Kikhney, A. Moter and D. Roderer. Structural basis of Fusobacterium nucleatum adhesin Fap2 interaction with receptors on cancer and immune cells. Preprint at bioRxiv, 2024. doi: 10.1101/2024.02.28.582045 .
P. N. Ng’ang’a*, J. Folz*, S. Kucher*, D. Roderer*, Y. Xu, O. Sitsel, A. Belyy, D. Prumbaum, R. Kühnemuth, T. E. Assafa, M. Dong, C. A. M. Seidel, E. Bordignon and S. Raunser. Multi-state kinetics of the syringe-like injection mechanism of Tc toxins. Preprint at bioRxiv, 2024. doi: 10.1101/2024.01.16.575634
M. Shafaq-Zadah*, E. Dransart, C. Wunder, V. Chambon, C. A. Valades-Cruz, L. Leconte, N. Kumar Sarangi, J. Robinson, S. Bai, R. Regmi, A. Di Cicco, A. Hovasse, R. Bartels, U. Nilsson, S. Cianférani-Sanglier, H. Leffler, T. Keyes, D. Lévy, S. Raunser, D. Roderer*, L. Johannes*. Spatial N-glycan rearrangement on α5β1 integrin nucleates galectin-3 oligomers to determine endocytic fate. Preprint at bioRxiv, 2023. doi: 10.1101/2023.10.27.564026.
Dieser Text und die Bilder sind unter der Creative Commons Lizenz "CC BY-NC-ND 4.0 DE - Namensnennung - Nicht-kommerziell - Keine Bearbeitung 4.0 Deutschland" veröffentlicht. Autor/-in: Daniel Roderer für leibniz-fmp.de
Sie dürfen den Text unter Nennung der Lizenz CC BY-NC-ND 4.0 DE und des/der Autors/-in teilen. Urheberrechtliche Angaben zu Bildern / Grafiken / Videos finden sich direkt bei den Abbildungen und ergänzend im Anschluss.